Translation - "slides" each point of a figure the same distance in the same direction without changing its size or shape and without turning it or flipping it.

A positive integer describes a translation right or up on a coordinate plane.

A negative integer describes a translation left or down on a coordinate plane.

A movement left or right is on the x-axis.

A movement up or down is on the y-axis.

Reflection - "flips" a figure over a mirror or reflection line; An object and its reflection have the same shape and size, but the figures face in opposite directions.

FLIP
Reflection Rules:

Reflect a figure over the x-axis- when reflecting over the x-axis, change the y coordinates to their opposites. ($x,-y$)

Reflect a figure over the y-axis- when reflecting over the y-axis, change the x coordinates to their opposites. (-x, y)

Reflection over any line

Each point of a reflected image is the same distance from the line of reflection as the corresponding point of the original figure.

Notice how each point of the original figure and its image are the same distance away from the line of reflection (which can be easily counted in this diagram since the line of reflection is vertical).

Rotation - turns a figure about a fixed point at a given angle and a given direction; An object and its rotation are the same shape and size, but the figures may be turned in different directions.

TURN

Rotation Rules:
 90 degree clockwise rotation around the origin (0,0), use: ($y,-x$)
 180 degree rotation around the origin (0,0) , use: $(-x,-y)$

270 degree clockwise rotation around the origin (0,0), use: $(-y, x)$

Dilation -

proportionally changes the size of an object (by shrinking or stretching), but not the shape.

ENLARGE/REDUCE

Dilation Rules:

To dilate a figure, always MULTIPLY the coordinates of each of its points by the percent of dilation.

First change the percent to a decimal (move the decimal point TWO places to the LEFT.

Next, multiply each of the coordinates by that number.

Coordinates - (x, y) Points

(x, y) values tell us how far fraes the center (0,0) Origin aspecific point is located.

Angles...			
Relationships		Measurements	
	Alternate Interior $\angle 3 \& \angle 6$ Alternate Exterior $\angle 2 \& \angle 8$ Consecutive Interior $\angle 4 \& \angle 6$ Corresponding $\angle 1 \& \angle 5$ Vertical $\angle 2$ \& $\angle 3$ Adjacent $\angle 7 \& \angle 8$		$\begin{aligned} & \mathrm{m} \angle 1=55^{\circ} \\ & \mathrm{m} \angle 2=125^{\circ} \\ & \mathrm{m} \angle 3=125^{\circ} \\ & \mathrm{m} \angle 4=55^{\circ} \\ & \mathrm{m} \angle 5=55^{\circ} \\ & \mathrm{m} \angle 6=125^{\circ} \\ & \mathrm{m} \angle 7=55^{\circ} \end{aligned}$
Supplementary angles = 180° Complementary angles = 90° Linear Pair: Two angles that are adjacent (share a leg) and supplementary (add up to 180°)	Corresponding angles = on the same side of the transversal (one angle is an interior and one is an exterior) Vertical angles are opposite of each other and have the same measurement; are congruent (\cong)	Alternate interior angles are opposite each other and inside two parallel lines which are cut by a transversal; have the same measurement; are congruent (\cong)	Alternate exterior angles are opposite each other and outside two parallel lines which are cut by a transversal; have the same measurement; are congruent (\cong)
Unit 2: Exponents and Equations			
Estimating Radicals: 1) Draw a number line 2) Find the closest perfect squares - one smaller and one larger 3) Eliminate answer choices	Scientific Notation: $\begin{aligned} & 3,420,000=3.42 \times 10^{6} \\ & .00000000986=9.86 \times 10^{9} \end{aligned}$ 1. Place decimal behind first non 0 number 2. Multiply by 10 3. Count spaces new to old (exponent) Left = negative and right = positive	Multiplying: $\left(2.3 \times 10^{5}\right)\left(1.4 \times 10^{2}\right)$ 1) $2.3 \times 1.4=3.22$ 2) $10^{5} \times 10^{2}=10^{7}$ 3) 3.22×10^{7}	Dividing: $\left(6 \times 10^{8}\right) \div\left(2 \times 10^{2}\right)$ 1) $6 \div 2=3$ 2) $10^{8} \div 10^{2}=10^{6}$ 3) $\mathbf{3} \times 10^{6}$
Square Roots			
Know perfect square roots to 25.	Know perfect cube roots to 10.	Know: $\begin{gathered} \sqrt{0}=0 \\ \sqrt{\text { }}=\text { radical } \end{gathered}$	Know: $\begin{gathered} 1^{0}=1 \\ 55^{0}=1 \\ 100^{\circ}=1 \end{gathered}$ Anything to the raised to the zero power is one.
Rational and Irrational Numbers			
Is a number that can be expres The numerator and the denom When the fraction is divided o decimal. Examples: 2/3 0.25 1/2 0.666	ional Numbers as a fraction or ratio. tor of the fraction are both integers. t becomes a terminating or repeating	Irrational Cannot be expressed as a fra Irrational numbers cannot be terminating or repeating dec Irrational numbers are non-t decimals. Example: $\begin{aligned} & \pi=3.141592654 \ldots . . \\ & \sqrt{2}=1.414213562 \ldots . . \\ & 0.1211211121112 \end{aligned}$	mbers on. presented as als. minating, non-repeating

Volume of a Cylinder:
$\mathbf{V}=\mathrm{Bh} \quad \mathrm{V}=\pi \mathrm{r}^{2} \mathbf{h}$
($B=$ area of base: πr^{2})
($\mathrm{h}=$ height of the figure)

A Coke can is 5 inches tall and has a radius of 2 inches. What is the volume of the can?
L: $r=2 \quad h=5$
$\mathbf{W}: V=\pi r^{2} h$
P: $\quad V=(3.14)\left(2^{2}\right)(5)$
C: $\quad V=62.8 \mathrm{in}^{3}$

Pythagorean Theorem:

*only works with right triangles
(right triangles have only 1 right angle)
$a^{2}+b^{2}=c^{2}$
$\mathbf{a} \& \mathbf{b}$ are legs
c is hypotenuse, longest side, opposite right angle

The Pythagorean theorem: The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c).

To find the missing leg: Take the area of the hypotenuse (area of the square on the hypotenuse) - the leg squares (area of the square on the leg) = the leg squared (area of the square on the leg).

To find the length of the leg: take the square root of the area of the square on the leg.

To find the missing hypotenuse: take the leg squared (area of the square on the leg) + the leg squared (area of the square on the leg) = the hypotenuse squared (area of the square on the hypotenuse).

To find the length of the hypotenuse: take the square root of the area of the square on the hypotenuse.

You are creating a picture frame in the shape of a right triangle. You have calculated the longest side to be 15 inches. What would be the length of the other two sides?
$a^{2}+b^{2}=15^{2}$
$a^{2}+b^{2}=225$
$\mathbf{9}^{2}+12^{2}=225$
$81+144=225$
The other two sides are 9 in . and 12 in.

The Altitude of a triangle

To calculate the area you pick one side to be the base, and then measure the altitude at right angles to it.
\qquad
\square

In the case of a triangle, a common way to calculate its area is 'half base times height' where the 'height' is the altitude, or the perpendicular distance from the base to the opposite vertex. The base can be any side, not just the one drawn at the bottom.

$$
\square 0
$$

($B=$ area of base: πr^{2})
($\pi \approx 3.14$)
($\mathrm{r}=$ radius)
($h=$ height of the figure)
What is the volume of an ice cream cone with a radius of 3 and height of 4 ?
$\mathrm{L}: \quad \mathrm{r}=3 \quad \mathrm{~h}=4$
W: $V=\frac{\pi r^{2} h}{3}$
P: $\quad V=\frac{(3.14)\left(3^{2}\right)(4)}{3}$
C: $\quad V=37.7$ units 3

$$
V=\frac{4 \pi r^{3}}{3}
$$

Volume of a Sphere:
($\pi \approx 3.14$)
(r = radius)

You are playing softball with friends. The ball has a diameter of 10 cm . What is the volume of the softball?

L: $\quad d=10 \quad r=5$
$\mathrm{w}: \mathrm{V}=\frac{4 \pi \mathrm{r}^{3}}{3}$
P: $\quad V=\frac{(4)(3.14)\left(5^{3}\right)}{3}$

Label the information Write the formula Plug in the information Chug out the answer

The diameter of a circle is longest distance across a circle. (The diameter cuts through the center of the circle. This is what makes it the longest distance.)

The radius of a circle is the distance from the center of the circle to the outside edge.

Is it a Right Triangle?
Plug into $a^{2}+b^{2}=c^{2}$ (c is biggest \#)

$$
\begin{array}{lc}
\mathbf{4 , 6 , 8} & \mathbf{3 , 4 , \mathbf { 5 }} \\
4^{2}+6^{2}=8^{2} & 3^{2}+4^{2}=5^{2} \\
16+36=64 & 9+16=25 \\
52 \neq 64 & 25=25 \\
\text { NO } & \text { YES }
\end{array}
$$

Converse of Pythagorean Theorem:
If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle.

Length of leg/hypotenuse measured in: ft, cm, m , etc.

Area of square on leg/hypotenuse measured

in:
$\mathrm{ft}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$, etc.

Literal Equations

Equations with multiple variables where you are asked to solve for just one of the variables.

Example:
Solve $V=\mathbb{F}^{2} h$ for r.

Step 1: Divide both sides by π and h
$\frac{V}{\pi \mathrm{~h}}=r^{2}$
Step 2: Take the square root of both side to get r by itself
$\sqrt{\frac{V}{\pi h}}=\sqrt{r^{2}}$
Step 3: Solve for r.
$\sqrt{\frac{V}{\pi h}}=r$

Example:
Solve $V=\pi^{2} h$ for h.
Step 1: To solve for h, you will need to divide both sides by π and r^{2}.
$\frac{V}{\pi r^{2}}=h$

Example:

The formula for finding the perimeter of a rectangle is $P=2 b+2 h$. Solve for h.

Step 1: subtract $2 b$ from each side
$P-2 b=2 h$

Step 2: Divide both sides by 2
$\frac{\mathrm{P}-2 \mathrm{~b}}{2}=\mathrm{h}$

Unit 5: Linear Functions
To find an equation, you always need a slope (m) and y -intercept (b)!!!!!

Equation From a Graph

1. Find the y-intercept (b)
2. Locate another point
3. From the "b" use rise over run to get to the next point this is your slope (m)
4. Put " m " and " b " into

Equation From a Table

1. Find $\frac{\text { change in } y}{\text { change in } x}=\boldsymbol{m}$
2. Pick a point (x, y) and plug into $y=m x+b$ along with m
3. Solve for " b "
4. Put " m " and " b " into

$$
y=\boldsymbol{m} x+\boldsymbol{b}
$$

$$
\mathbf{m}=\frac{4}{1} \quad \mathbf{b}=(0,2)=2
$$

$$
y=4 x+2
$$

Standard Form

$a x+b y=c$

Convert to slope intercept form

move ax to opposite side with opposite sign (by =-ax $+c$)

1. y stands alone; divide everything by b

$$
\left(\mathrm{y}=-\frac{a}{b} \mathrm{x}+\frac{c}{b}\right)
$$

2. y cannot be negative (change everything in equation to opposite sign (multiplying by -1))

Equation From ($\mathrm{x}_{1}, \mathrm{y}_{1}$) $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

1. Find $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=m$
2. Pick a point (x, y) and plug into $y=m x+b$ along with m
3. Solve for " b "
4. Put " m " and " b " into

$$
y=m x+b
$$

Determine equation from points $(0,-4)$ and $(0,5)$.

$$
\begin{aligned}
& \frac{5--4}{0-0}=\frac{5+4}{0}=\frac{9}{0}= \\
& \text { undefined slope } \\
& \text { (remember equation is } x=\text {) } \\
& \\
& x=0
\end{aligned}
$$

Word Problem

The distance traveled on a trip is directly proportional to the speed of the car. A car traveled 300 miles in six hours. Write an equation to represent y, the distance the car would travel in x hours.

REMEMBER: Unit Rate $=$ SLOPE

$$
\frac{300}{6}=50
$$

$$
y=50 x
$$

Types of SLOPE

Types of SLOPE			
POSITIVE SLOPE	NEGATIVE SLOPE	UNDEFINED SLOPE	ZERO SLOPE
Graphed line moves upward from left to right.	Graphed line moves downward from left to right.	Graphed line is a vertical line (straight up and down).	Graphed line is a horizontal line.
Example:	Example:	Example:	Example:
Example: $\begin{aligned} & y=6 x+1 \\ & y=\frac{2}{3} x-4 \end{aligned}$	Example: $\begin{aligned} & y=-3 x+2 \\ & y=-\frac{2}{5} x-1 \end{aligned}$	$\begin{aligned} & \text { Example: } \\ & x=4 \\ & x=-6 \\ & x=3 \end{aligned}$	$\begin{aligned} & \text { Example: } \\ & y=5 \\ & y=-2 \\ & y=8 \end{aligned}$
Unit 6: Linear Models \& Tables			
Rate of Change			
Increasing - positive slope	Decreasing - negative slope	Greatest ROC= Ignore the sign (doesn't matter if positive or negative) and choose biggest number	Least ROC = Ignore the sign (doesn't matter if positive or negative) and choose smallest number
Stories from Graphs			
Going away from = distance increasing $=$ positive slope	Going towards = distance decreasing $=$ negative slope	Running $=$ steeper line	Walking = less steep line

Line of Best Fit

1. Put your ruler in the middle of as many points as possible
2. Draw a straight line across whole graph (This line may pass through some of the points, none of the points, or all of the points).

3. Find your "b" - Look at where the line crosses the y-axis
4. Find your slope = pick two points and count rise over run.

Scatter Plots

Strong Correlation - close together
Weak Correlation - far apart

Variables

Variables can be classified as categorical (aka, qualitative) or quantitative (aka, numerical).

- Categorical. Categorical variables take on values that are names or labels. The color of a ball (e.g., red, green, blue) or the breed of a dog (e.g., collie, shepherd, terrier) would be examples of categorical variables.
- Quantitative. Quantitative variables are numerical. They represent a measurable quantity. For example, when we speak of the population of a city, we are talking about the number of people in the city - a measurable attribute of the city. Therefore, population would be a quantitative variable
- An outlier is an observation that lies outside the overall pattern of a distribution. Usually, the presence of an outlier indicates some sort of problem. This can be a case which does not fit the model under study, or an error in measurement.

Unit 7: Systems of Equations

Solution: (x, y)
Where the lines intersect
Intersecting Lines Exactly one solution

Graphing

Find the Solution

Solution: $(2,2)$

Elimination

$\{3 y+2 x=6$
$\{5 y-2 x=10$

Eliminate the x-variable by addition of the two
equations.
$3 y+2 x=6$
$+5 y-2 x=10$
$=8 y=16$
$y=2$
The value of y can now be substituted into either of the original equations to find the value of x.
$3 y+2 x=6$
$3 \cdot 2+2 x=6$
$6+2 x=6$

Substitution

$$
\begin{gathered}
y=\underbrace{}_{\substack{\downarrow \\
2 y=3 x}} \quad 2 y=3 x \\
2(x+1)=3 x \\
2 x+2=3 x \\
\frac{-2 x}{2 x}-2 x \\
\downarrow=x \\
y=x+1 \\
y=2+1=3
\end{gathered}
$$

