19 Dots

Here are 19 dots arranged in a hexagon. Your task is to label the dots with the numbers 1 to 19 so that each set of three dots that lie along a straight-line segment add up to 22 .

Solution:

Here are two solutions. There may be others.

OO1ニのしくーのしの

のLS＝hexte prafunos，polluo
$\theta<\eta=g と \times g \varphi \operatorname{mon} \operatorname{mon}$

 $g_{2}=1+5 z \cup 0$

$h e=1-5 e=x$

＊үредя әчу

hneqpardat

$1+v \varepsilon_{-} v e$

lmon s! sill

$$
\begin{equation*}
1+v \varphi-_{2} " \varphi=1 \tag{0}
\end{equation*}
$$

: SOJ

$s e$
$\frac{L}{4 n+5}$

$$
91 \quad \text { bound }
$$

$$
\frac{91}{h \sin _{\sin +\infty} t 6}
$$

$$
501>\operatorname{lod}+5
$$

sphomprog yoom from no

'ие.รәq әшъ.я әчд иәчм реч Кәихетg suṭoo pios Киеш моч рие реч sә[yледs

(xヤセeq uro ponutiquos)

 әчs ‘iIə

$$
\text { supwo } h=\text { mpowisg } \quad \text { twobs } T=\text { wout } \quad \square
$$

$$
\text { stren ool }=f \quad \text { steunbs seq }={ }_{e} \text { se }=\theta
$$

Of strom
isint vinidxa sen sury.l.

$h-\Delta h l=d$
$(n-88)+89=d$
$h-y=\varepsilon 9$
$\begin{aligned} h-y=8 \varepsilon & +\supset \tau \\ q \varepsilon & =\partial z\end{aligned}$
$y 1=g 8$
$y 1=8 \varphi$
$\exists 1=8 t$

 irsoono ans oos yrimm xapu!m to
 o smomjo si rump arsocys frmeddo verof veloo
 .

-әшев
 'punor чэъә su!м

-ə!̣ әшо syэ!

 $2+h+s c-51 \quad 1+6+s=11$ $1+h+s \leftarrow \varepsilon 1 \quad$ とfs \leftarrow -

 -әq!̣ssod se sұчठ!

sauplermay $C=$ aunds T amplsimal 1 a anoo T pero

$$
\begin{equation*}
\text { rpp!lho } \frac{\varepsilon}{1}=\operatorname{ros} t \tag{uo}
\end{equation*}
$$

－8utucoseax
 әч7 әұеұя рие ‘әләч

小e＝人

次：$\mu \mathrm{L}=1$

-əSEq łSəłปIOપS əપఫ IOJ

$$
\begin{array}{ccc}
01 \\
(8+h) \varepsilon & \left.\begin{array}{c}
2509 \\
\text { torys }
\end{array}\right]
\end{array}
$$

$$
(s+\sqrt{5}) \varepsilon=\binom{2509}{t \times 0 y s} 01
$$

$$
\frac{s+h}{2 \sin 9 t^{\prime o y s}}=\frac{0!}{\varepsilon}
$$

$$
\frac{\text { puroq pleym }}{2 \sin 9 \text { peoys }}
$$

osiog twoys		
5001 ,		
$(8+\Lambda)$ ภutumseəu preoq uәроом е		
e Sutping si poolu ue		

7I झo 7ºus pue suot our

Building Blocks Answer Key

Step	Work	Number of Squares
1	$3 * 1=3 * 2^{0}$	3
2	$3 * 2=3 * 2^{1}$	6
3	$3 * 4=3 * 2^{2}$	12
4	$3 * 8=3 * 2^{3}$	24
n		$3 * 2^{n-1}$

Explanation:
The 3 is the height of each step. The 2 is the scale factor from step to step.

Chocolate Fix Solution
Advanced

Expert

Coordinate Parallelograms

Directions: Fill in the x and y coordinates using whole numbers $1-9$, without repetition, so that the points make a parallelogram.

Solution:
There are multiple answers:
$>(1,7)(6,5)(3,4)(8,2)$
$>$ (posted by Kevin Rees) I only found eight possible solutions, but I'm willing to be wrong.
All are transformations of the first solution given - reflect it over the midline $(y=4.5)$ for another, over the other midline ($x=4.5$) and across the line $y=x$. This gives you four solutions that all have rotational symmetry with each other about a circle centered at $(4.5,4.5)$. To get the other four solutions translate the first four solutions by the vector.

Answer Key to Cycling Squares

Four Brothers Answer

Alfred \& Horatio are lying.
Indigo \& Bernard are telling the truth.

Mathematical Constants (4 points, -1 for hint)

Problem:

Eight numbered cards lie face down on a table in the relative positions shown in the diagram below.

Of the cight cards:

1. Every Ace borders on a King.
2. Every King borders on a Queen.
3. Every Queen borders on a Jack.
4. No Queen borders on an Ace.
5. No two cards of the same kind border on each other.
6. There are two Aces, two Kings, two Queens, and two Jacks.

Which kind of card-Ace, King, Queen, or Jack-is card number six?
The hint will be what is in position 6.

Solution:

Suppose card number six were an Ace (a) Then neither cards number seven nor eight could be an Ace, from [5]; could be a Queen, from [4]; could be a King, from [2] (b) Then at most one card of cards number seven and eight could be a Jack, from [3]. So, from [6], card number six is not an Ace.

Suppose card number six were a Queen. (a) Then none of cards number four, five, seven, and eight could be a Queen, from [5]; or could be an Ace, from [4]. (b) Then, from [6], two Aces and a Queen would be cards number one, two, and three; which, from [4] and [5], is impossible. So, from [6], card number six is not a Queen.

Suppose card number six were a Jack, (a) Then neither cards number seven nor eight could be an Ace from [1]; could be a Jack, from [5];
could be a King, from [2]. (b) Then at most one card of cards number seven and eight could be a Queen, from [2]. So, from [6], card number six is not a Jack.

Then card number six is a Kitge
It is possible to determine cards number one through six. Since card number six is a King, card number five or four is a Queen, from [2] and [3]. If card number five is a Queen, then card number three is a Jack, from [3]. Then card number two is not a Queen, from [2], and cards number one and four are a King and a Queen, respectively, from [2]. Then, from [6], card number two must be a Jack, which contradicts [5] So card number five is not 1 Queen and card number four is a Queen. Then neither of cards number one and three is a Queen, from [5]; neither of cards number seven and eight is a Queen, from [3]; and card number five is not a Quen, from previous reasoning. So card number two is a Queen. Then card number throe is a Jack, from [3]; card number one is a King from [2]. Then card number five is an Ace, from [5] and [6]. A Jack and an Ace are left for cards number seven and eight.
solving Pentominoes 3×20 :
solution 1:
$01,102,002,102,203,1 \mathrm{X}$
$00,000,100,201,001,2$ U
03,2 04,1 04,2 05,1 05,2 P
03,0 04,0 05,0 06,0 07,0 I
06,1 06,2 07,2 08,2 09,2 L
07,1 08,0 08,1 09,0 10,0 N
09,1 10,1 10, 2 11,0 11,1 F
$11,212,012,112,213,2$ T
$13,013,114,114,215,2 \mathrm{~W}$
$14,015,015,116,017,0 \mathrm{Y}$
$16,116,217,118,018,1 \mathrm{Z}$
$17,218,219,019,119,2 \mathrm{~V}$
U UXPPPLLLLFTTTWWZVVV UXXXPPLNNFFFTWWYZZZV UUXIIIIINNNFTWYYYYZV

```
solution 2:
```

$01,102,002,102,203,1 \mathrm{X}$
$00,000,100,201,001,2$ U
03,2 04,1 04,2 05,1 05,2 P
03,0 04,0 05,0 06,0 07,0 I
06,1 06,2 07,1 08,0 08,1 Z
07,2 08,2 09,1 09,2 10,2 Y
09,0 10,0 10,1 11,1 11,2 W
$11,012,012,112,213,0 \mathrm{~T}$
$13,113,214,014,115,1 \mathrm{~F}$
$14,215,216,116,217,1 \mathrm{~N}$
$15,016,017,018,018,1 \mathrm{~L}$
$17,218,219,019,119,2 \mathrm{~V}$
U UXPPPRYYYYWTFNNNVVV
UXXXPPZZZYWWTFFFNNLV
U UXII I I I Z W W T T T FLLLLV

Pentominoes

Rectangles

- $3 \times 20: 2$ solutions

Pick a House Solution

As you are walking down Main Street in a small town, you notice three pretty houses next to one another. In each house lives two children. One house has a boy and a girl, one house has two girls, and the last house has two boys. If you were to walk into a house at random and see a girl, what is the probability that the other child in the house is also a girl?

Answer: 2/3 or 0.666 or about 67\%.

Solution: There are three girls and each is equally likely to be the girl in a house with another girl. For example, if Jane and Susan live in one house, Carly and Tom in another, and Mike and David in the third then: if you see Jane you have a chance to see a girl, if you see Susan you have a chance to see a girl, if you see Carly, you do not have a chance to see a girl. That is three chances to see a girl first and only two possibilities to see a girl second

Growing Shapes

This is a two-part problem.

Case 1

Case 2

Case 3

Part One:

Without any numbers or algebra, describe how you see the shapes growing. Once you have one description, look again to find another way. Report both of your descriptions to the Master Teacher. When the Master Teacher is satisfied with your descriptions, you will receive part two of this problem.

Solution:

Answers will vary. This problem is designed to be a math talk. For sample solutions, go to Jo Boaler's TEDxStanford talk, "How you can be good at math and other surprising facts about learning.
https://www.youtube.com/watch?v=3icoSeGqQtY

Growing Shapes

This is a two-part problem.

Case 1

Case 2

Case 3

Part Two:

Your task is to generate a formula that will determine the total number of tiles necessary to build the $n^{\text {th }}$ case for the growing shapes. Be prepared to justify each aspect of your formula with respect to the growth of the shapes or the structure of the geometric aspects of the shapes. You will earn 1 puzzle piece for the formula and an additional 2 puzzle pieces for the explanation.

Solution:

$(\mathrm{n}+1)^{2}$
Quality of explanation will decide number of points received.

How Many?

Using your best estimation skills and tools at your disposal estimate, determine how many cotton balls are in this container.

Tools that you may use are in your tub include, but are not limited to:

* a cotton ball.
* a yogurt container.
* a medium size plastic container.
* a measuring tape.

You may come to Historic Room 1056 to investigate the container filled with loosely,
 packed cotton balls.

You are not receiving puzzle pieces solely based on the estimation value. Instead you will receive one or two puzzle pieces based on the MATH THINKING behind your estimation.

When you have done the math, and you are ready to justify your estimate, return to the Master Teacher.

Solution:

There are 620 cotton balls in the container. Explanation should include proportional reasoning based on the benchmark containers provided to the students. By our calculations there were 11 cotton balls per yogurt container.

Noal's Ark

SOLUTION

Noah wants his Ark to sail along on an even keel. The Ark is divided down the middle, and on each deck the animals on the left exactly balance those on the right-- all but the third deck.

Your task is to determine how many giraffes are needed in place of the question mark. Be prepared to justify your answer.

Six giraffes

SOLUTION

George Crackham put five bags on the table. On being asked what they contained, he said:
"Well, I have put one hundred nuts in these five bags. In the first and second there are altogether fifty-two nuts; in the second and third there are forty-three; in the third and fourth, thirty-four; in the fourth and fifth, thirty."

Your task is to determine how many nuts are in each bag. Be prepared to explain your problem solving method and justify your answer.

Bag 1 = 27
Bag 2 = 25
Bag 3 = 18
Bag $4=16$
Bag $5=14$

Open Box Challenge

This is a two-part problem.

Part One:

Using the 1" paper squares, create nets that will fold into a 1 " $\times 1$ " x 1" open box. Each net MUST BE UNIQUE. Tape the squares together to form each unique net.

Once you think you have created all the possible unique nets, take them to the master teacher. This is a ONE TIME OPPORTUNITY. You will not be allowed to submit this answer more than one time.

When you present Part One's answer, you will receive Part Two from the Master Teacher.

Solution nets

Open Box Challenge

Part Two
The Master Teacher has given you a set of pentominoes, a practice sheet, and a 3" x 20 " rectangular template. Your task is to fill the rectangle with all 12 pentominoes. You must stay within the rectangle's boundaries with no gaps and no overlaps.

Before coming to the Master Teacher, be prepared to explain how you derived your solution.

Once you have filled the rectangle, CAREFULLY bring your filled rectangular template to the Master Teacher. Remember that there is a white board in your room to help you with this.

Solution1:
UUXPPPLLLLFTTTHHZYVY
UXXXPPLNWHPTWHYZZZV
UUXIIIIINNNFTHYYYYZY

Solution 2 :

UUXPPPZYYYYHTFNNNYYY
UXXXPPZZZYH HTFFFNNLV
UUXIIIIIZHWTTTFLLLLV

SOLUTION

Today is March 9,2019 ($\left.3^{1} / 3^{2} / 2019\right)$. This problem is to pay respect to the day.

$$
3^{x}+3^{x-1}+3^{x-2}=351
$$

Your task is to solve for \boldsymbol{x}.
Be prepared to justify your solution.

$$
\begin{aligned}
& 3^{x-2}\left(3^{2}+3^{1}+1\right)=351 \\
& x=5
\end{aligned}
$$

Square to Rectangle - Part 1

Take an 8 by 8 square, and cut it up as shown to the right.

In the rectangle below, rearrange the pieces to make a 5 by 13 rectangle.

Solution:

Square to Rectangle: Part 2

the area of

the area of

It seems we can use the same pieces to make two shapes with different areas! Or can we? Can you explain why or why not this can or cannot be done? Be very detailed in justifying your answer.

Solution:

What looks to be a diagonal in the 5 by 13 rectangle is not a straight line. The slopes for the triangles is $3 / 8$ and the slope on the trapezoids is $2 / 5$, thus creating a concave image that appears to be straight. The extra square unit of area is in this "slice".

All the Pets

The students in Mr. Albert's math class conducted a survey of 50 students about their pets. Below are the results:

- 30 students have cats
- 25 students have dogs
- 16 students have both dogs and cats
- 5 students have mice
- 4 students have both dogs and mice
- 2 students have both cats and mice
- 1 student has all three

Your task is to determine how many of the 50 surveyed students have no pet?

Solution

How Much Pie?

All squares are the same size, and the pies within each square are identical.

The Tau Bakery packs its cherry pies in three different packages. You love cherry pie and want to figure out which package gives you the most pie. Decide whether you want to select Package A, Package B, or Package C. You can assume that all pies the Tau Bakery makes are baked in two-inch deep pie plates.

Your task is to determine which package contains the most pie.

Solution: They are all the same.
Box A: $A=\pi r^{2}$ and with just one pie that is it.
Box B: One pie is $A=\pi\left(\frac{r}{2}\right)^{2}=1 / 4 \pi r^{2}$ and with 4 pies $A=4\left(\frac{1}{4}\right) \pi r^{2}=\pi r^{2}$
Box C: One pie is $A=\pi\left(\frac{r}{4}\right)^{2}=1 / 16 \pi r^{2}$ and with 16 pies $A=16\left(\frac{1}{16}\right) \pi r^{2}=\pi r^{2}$

Mathematical Constants

Eight symbol cards lie face down on a table in the positions shown in the diagram below.

Of the eight cards:

- Every pi (π) borders a phi (φ).
- Every phi (φ) borders a tau (τ).
- Every tau (τ) borders an Euler's number (e).
- No tau (τ) borders a pi (π).
- No two cards of the same kind border each other.
- There are two pi (π), two phi (φ), two tau (τ), and two Euler's number (e).

Your task is to determine the position of all the cards. If you are correct on your first attempt, your team will be awarded four points. If you are incorrect on the first attempt, the master teacher will give you a hint and deduct one point from the points possible for this problem.

Solution: The hint is φ is in the number 6 position.

Maximum Slide

A company wants to design a slide with maximum steepness. The slide will be built by attaching panels to a large steel frame arranged as a coordinate grid. One point of the slide must pass through the point
$(1,2)$. A second point of the slide must pass through an ordered pair of the form (x, y) where the values of x and y are integers 1 through 9. Each integer can be used, at most, one time in creating the ordered pairs.

Your task is to answer the following questions:

- What ordered pair will create the slide with maximum steepness?
(You can't slide down a vertical panel-you'll just fall-so an undefined steepness is not allowed.)
- If the slide is expanded, what y-value would correspond to $x=20$?
- What is the equation of the line that represents the slide?

Solution:

The ordered pair is $(2,9)$
When $\mathrm{x}=20, \mathrm{y}=135$
Equation is $\mathrm{y}=7 \mathrm{x}-5$

Professor Archimedes challenged his students to find numbers composed of three different digits such that each is divisible by the square of the sum of those digits. He gave them an example to start their thinking.

Example: In the case of 112, the digits sum is 4 , the square of which is 16 , and 112 can be divided by 16 without a remainder, but unfortunately 112 does not contain three DIFFERENT digits.

There is more than one number that will fit these conditions. Your team will earn 3 points for one solution. It is possible to earn 2 more points for a second solution and 1 additional point for a third solution.

Your task is to determine at least one, but no more than three, solution(s) that fit the challenge that Professor Archimedes gave his students.

Solution: The numbers are 162, 243, 324, 392, 405, $512,605,648,810$, and 972.

Parallel Lines and Transversal

Using the digits 1 to 9 at most one time each, fill in the boxes so that two of the lines are parallel and the third line is a transversal that is as close to perpendicular to the parallel lines as possible. Use the provided digit cards to help you solve the equations.

Your task is to complete the above equations.

Since the slope of a perpendicular line should be the negative reciprocal of the other line, and since we can't make it negative, then the slope that is closest to zero should be the closest to perpendicular. Accordingly, the best answer so far is $6 x+3 y=7,4 x+2 y=8, x+9 y=5$

Supplementary Complement

On his birthday, Albert Einstein was pondering angles. He observed an angle that measured at least $\frac{2}{3}$ of its supplement and, at most, 5 times its complement.

Your task is to determine the difference between the largest and smallest possible degree measures of the angle.

Be prepared to justify your solution.

Solution: 3

Angle $\geq 2 / 3$ (180-Angle)
$A \geq 120-2 / 3 A$
$5 / 3 A \geq 120$
$A \geq 72$
Difference: 78-75=3

Angle $\leq 5(90-$ Angle)
$A \leq 450-5 A$
$6 \mathrm{~A} \leq 450$
$A \leq 75$

Where is a Billion?

Task:
> Use the adding machine tape as a number line.
> Place the end points, "zero" and "one trillion" on the number line.
> Mark one billion on the number line.
> Bring the number line to the Master Teacher.
> Be ready to explain the math you used to justify the placement of one billion.

Solution:

There are 1,000 billions in a trillion.

$$
12^{\prime}=144 \mathrm{in}
$$

$144 \div 1,000=0.144$ inch is where you would find 1 billion.

Placement should be around $\frac{1}{8}$ of an inch.

Wipeout Answers

a) 3
b) 4
c) 12
d) $N=13$, \# removed = 9
e) $N=51, \#$ removed $=38$

Extension:

